Null Geodesics in Five-Dimensional Manifolds
نویسندگان
چکیده
We analyze a class of 5D non-compact warped-product spaces characterized by metrics that depend on the extra coordinate via a conformal factor. Our model is closely related to the so-called canonical coordinate gauge of Mashhoon et al. We confirm that if the 5D manifold in our model is Ricciflat, then there is an induced cosmological constant in the 4D sub-manifold. We derive the general form of the 5D Killing vectors and relate them to the 4D Killing vectors of the embedded spacetime. We then study the 5D null geodesic paths and show that the 4D part of the motion can be timelike — that is, massless particles in 5D can be massive in 4D. We find that if the null trajectories are affinely parameterized in 5D, then the particle is subject to an anomalous acceleration or fifth force. However, this force may be removed by reparameterization, which brings the correct definition of the proper time into question. Physical properties of the geodesics — such as rest mass variations induced by a variable cosmological “constant”, constants of the motion and 5D time-dilation effects — are discussed and are shown to be open to experimental or observational investigation.
منابع مشابه
A Berger-green Type Inequality for Compact Lorentzian Manifolds
We give a Lorentzian metric on the null congruence associated with a timelike conformal vector field. A Liouville type theorem is proved and a boundedness for the volume of the null congruence, analogous to a well-known Berger-Green theorem in the Riemannian case, will be derived by studying conjugate points along null geodesics. As a consequence, several classification results on certain compa...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملNotes on Five-dimensional Kerr Black Holes
The geometry of five-dimensional Kerr black holes is discussed based on geodesics and Weyl curvatures. Kerr-Star space, Star-Kerr space and Kruskal space are naturally introduced by using special null geodesics. We show that the geodesics of AdS Kerr black hole are integrable, which generalizes the result of Frolov and Stojkovic. We also show that five-dimensional AdS Kerr black holes are isosp...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملTotally null surfaces in neutral Kähler 4-manifolds
We study the totally null surfaces of the neutral Kähler metric on certain 4-manifolds. The tangent spaces of totally null surfaces are either self-dual (α-planes) or anti-self-dual (β-planes) and so we consider α-surfaces and β-surfaces. The metric of the examples we study, which include the spaces of oriented geodesics of 3-manifolds of constant curvature, are anti-self-dual, and so it is wel...
متن کامل